The Histone Mark H3K36me3 Regulates Human DNA Mismatch Repair through Its Interaction with MutSα

نویسندگان

  • Feng Li
  • Guogen Mao
  • Dan Tong
  • Jian Huang
  • Liya Gu
  • Wei Yang
  • Guo-Min Li
چکیده

DNA mismatch repair (MMR) ensures replication fidelity by correcting mismatches generated during DNA replication. Although human MMR has been reconstituted in vitro, how MMR occurs in vivo is unknown. Here, we show that an epigenetic histone mark, H3K36me3, is required in vivo to recruit the mismatch recognition protein hMutSα (hMSH2-hMSH6) onto chromatin through direct interactions with the hMSH6 PWWP domain. The abundance of H3K36me3 in G1 and early S phases ensures that hMutSα is enriched on chromatin before mispairs are introduced during DNA replication. Cells lacking the H3K36 trimethyltransferase SETD2 display microsatellite instability (MSI) and an elevated spontaneous mutation frequency, characteristic of MMR-deficient cells. This work reveals that a histone mark regulates MMR in human cells and explains the long-standing puzzle of MSI-positive cancer cells that lack detectable mutations in known MMR genes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Your MARK, Get SET(D2), Go! H3K36me3 Primes DNA Mismatch Repair

Trimethylation of histone H3 on Lys36 (H3K36me3) by SETD2 is linked to actively transcribed regions. Li et al. identify a novel role for H3K36me3 that facilitates DNA mismatch repair (MMR) in cells by targeting the MMR machinery to chromatin during the cell cycle, thereby explaining certain cases of MMR-defective cancers.

متن کامل

Decoding the histone code: Role of H3K36me3 in mismatch repair and implications for cancer susceptibility and therapy.

DNA mismatch repair (MMR) maintains genome stability primarily by correcting replication-associated mismatches. Defects in MMR lead to several human cancers characterized by frequent alterations in simple repetitive DNA sequences, a phenomenon called microsatellite instability (MSI). In most MSI-positive cancers, genetic or epigenetic changes that alter the function or expression of an essentia...

متن کامل

MutSβ and histone deacetylase complexes promote expansions of trinucleotide repeats in human cells

Trinucleotide repeat (TNR) expansions cause at least 17 heritable neurological diseases, including Huntington's disease. Expansions are thought to arise from abnormal processing of TNR DNA by specific trans-acting proteins. For example, the DNA repair complex MutSβ (MSH2-MSH3 heterodimer) is required in mice for on-going expansions of long, disease-causing alleles. A distinctive feature of TNR ...

متن کامل

CAF-I-dependent control of degradation of the discontinuous strands during mismatch repair.

DNA mismatch repair (MMR) is a multifunctional process that promotes genetic stability and suppresses carcinogenesis. Correction of DNA replication errors is its major function. Despite the importance of MMR, its functioning in eukaryotes is not well understood. Here we report that human mismatch correction reactions in cell-free extracts occur during concomitant nick-dependent nucleosome assem...

متن کامل

LncRNA HOTAIR promotes human liver cancer stem cell malignant growth through downregulation of SETD2

Long non-coding RNA HOTAIR predicts negative tumor prognosis and exhibits oncogenic activity. Herein, we demonstrate HOTAIR promotes human liver cancer stem cell malignant growth through downregulation of SETD2. Mechanistically, HOTAIR reduces the recuritment of the CREB, P300, RNA polII onto the SETD2 promoter region that inhibits SETD2 expression and its phosphorylation. Thereby, the SETD2 bi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 153  شماره 

صفحات  -

تاریخ انتشار 2013